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Abstract

List et al. (2019) provides a framework for testing multiple null hypotheses simultaneously using experimental

data in which simple random sampling is used to assign treatment status to units. As in List et al. (2019),

we rely on general results in Romano and Wolf (2010) to develop under weak assumptions a procedure

that (i) asymptotically controls the familywise error rate – the probability of one or more false rejections –

and (ii) is asymptotically balanced in that the marginal probability of rejecting any true null hypothesis is

approximately equal in large samples. Our analysis departs from List et al. (2019) in that it further exploits

observed, baseline covariates. The precise way in which these covariates are incorporated is based upon

results in Ye et al. (2022) in order to ensure that inferences are typically more powerful in large samples.
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1. Introduction

False positives have become the poster child for the credibility revolution of the past two decades in the social

sciences. While incenting and improving replications certainly holds an important place in this movement

(see, e.g., Maniadis et al. (2014); Dreber et al. (2015); Butera et al. (2020)), in this study we focus instead

on false positives that arise because of a failure to account for the testing of multiple null hypotheses

simultaneously. As in List et al. (2019), we focus on experimental data in which treatment status is assigned

using simple random sampling. In the analysis of experimental data, different null hypotheses arise naturally

for at least three different reasons: when there are multiple outcomes of interest and it is desired to determine
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on which of these outcomes a treatment has an effect; when the effect of a treatment may be heterogeneous

in that it varies across subgroups defined by observed characteristics and it is desired to determine for which

of these subgroups a treatment has an effect; and finally when there are multiple treatments of interest and

it is desired to determine which treatments have an effect relative to either the control or each of the other

treatments. Using the general results in Romano and Wolf (2010), we develop under weak assumptions a

procedure that (i) asymptotically controls the familywise error rate – the probability of one or more false

rejections – and (ii) is asymptotically balanced in that the marginal probability of rejecting any true null

hypothesis is approximately equal in large samples. The resulting procedure differs from classical multiple

testing procedures, such as Bonferroni (1935) and Holm (1979), in that it incorporates information about

the joint dependence structure of the test statistics when determining which null hypotheses to reject. This

feature leads to important gains in power. An important point of departure, however, is that we exploit

observed, baseline covariates to obtain further gains in power. The precise way in which these covariates

are incorporated is based upon results in Ye et al. (2022) in order to ensure that inferences are typically

more powerful in large samples. We highlight these gains in power by applying our approach to the data

in Karlan and List (2007), who examine questions within the economics of charitable giving in a natural

field experiment. In particular, they examine how matching grants influence giving rates. In comparison

with the reanalysis of this data presented in List et al. (2019), by exploiting observed, baseline covariates,

we find even more evidence that the major results in Karlan and List (2007) hold after accounting for the

multiplicity of tests under consideration.

The problems stemming from testing multiple null hypotheses simultaneously in empirical research have

enjoyed increasing visibility in economics. For some recent applications of multiple testing in empirical

research, see Anderson et al. (2003), Lee and Shaikh (2014), Heckman et al. (2010), and Heckman et al.

(2020). These papers exploit mainly theoretical results found in Romano and Wolf (2005), upon which

Romano and Wolf (2010) builds. For an overview of such methods, see Romano et al. (2010b), Romano

et al. (2008b) and Romano et al. (2010a). Other closely related methods can be found in Romano and

Shaikh (2006) and Romano et al. (2008a).

The remainder of our note proceeds as follows. Section 2 describes our general setting whereas Section 3

describes our procedure algorithmically and our main theoretical result. Section 4 describes our charitable

giving case study design and empirical results. Section 5 concludes. Documentation of our procedures and

the code to apply our approach in Stata can be found at the following address:

https://github.com/vayalinkal/mhtexp2.
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2. Setup and Notation

For k ∈ K, let Yi,k denote the kth observed outcome of interest for the ith unit, Di denote treatment status

for the ith unit, Xi denote (a vector of) observed, baseline covariates for the ith unit, and Zi denote the

subgroup that the ith unit belongs to. Further denote by D and Z the supports of Di and Zi, respectively.

For d ∈ D, let Yi,k(d) be the kth potential outcome for the ith unit if treatment status were (possibly

counterfactually) set equal to d. As usual, the kth observed outcome and kth potential outcome are related

to treatment status by the relationship

Yi,k =
∑
d∈D

Yi,k(d)I {Di = d}

It is useful to introduce the shorthand notation Yi = (Yi,k : k ∈ K) and Yi(d) = (Yi,k(d) : k ∈ K) . We assume

that ((Yi(d) : d ∈ D) , Di, Xi, Zi) , i = 1, . . . , n are i.i.d. with distribution Q ∈ Ω, where our requirements on Ω

are specified below. It follows that the observed data (Yi, Di, Xi, Zi) , i = 1, . . . , n are i.i.d. with distribution

P = P (Q). Denote by P̂n the empirical distribution of the observed data. The family of null hypotheses of

interest is indexed by

s ∈ S ⊆ {(d, d′, z, k) : d ∈ D, d′ ∈ D, z ∈ Z, k ∈ K} .

For each s ∈ S, define

ωs = {Q ∈ Ω : EQ [Yi,k(d)− Yi,k (d
′) |Zi = z] = 0} .

Using this notation, the family of null hypotheses of interest is given by

Hs : Q ∈ ωs for s ∈ S . (1)

In other words, the sth null hypothesis specifies the average effect of treatment d on the kth outcome of

interest for the subpopulation where Zi = z equals the average effect of treatment d′ on the kth outcome of

interest for the subpopulation where Zi = z. For later use, let

S0(Q) = {s ∈ S : Q ∈ ωs} .

3



As in List et al. (2019), our goal is to construct a procedure for testing these null hypotheses in a way that

ensures asymptotic control of the familywise error rate uniformly over Q ∈ Ω. In contrast to List et al.

(2019), however, our analysis exploits the observed, baseline covariates Xi. As explained further in Remark

3.1 in Section 3 below, the precise way in which we do so ensures that the use of such covariates leads to

more powerful inferences, at least in large samples.

We require for each Q ∈ Ω that

lim sup
n→∞

FWERQ ≤ α (2)

for a pre-specified value of α ∈ (0, 1), where

FWERQ = Q { reject any Hs with s ∈ S0(Q)} .

We additionally require that the testing procedure is “balanced” in that for each Q ∈ Ω

lim
n→∞

Q { reject Hs} = lim
n→∞

Q { reject Hs′} for any s and s′ in S0(Q) . (3)

Remark 2.1. We emphasize that the family of null hypotheses of interest, S, is only a subset of the set

of all possible null hypotheses one could test, and that it may not always be desirable to choose S to be as

large as possible. Indeed, the choice of S may be disciplined, in part, by which decisions one wishes to make

and/or what one wishes to learn with confidence from the data. For a discussion, see Viviano et al. (2022).

To help illustrate this point, we examine a few different scenarios and consider some potential choices of S

for each of them:

(a) Suppose there is a single treatment, a single outcome, and multiple subpopulations defined according to

the joint values of two binary variables z1 and z2. Further suppose that it is only feasible to decide to treat

everyone with a common value of z1, regardless of their value of z2. In this case, if one wants to decide

which subpopulations to treat, then it is natural to define S as the family of null hypotheses determined

by only the two subpopulations determined by z1, rather than the four subpopulations determined by

(z1, z2).

(b) Suppose there is a single treatment, multiple outcomes and a single subpopulation. It is now less clear

whether the null hypotheses corresponding to all such outcomes should be included in the family. To

guide decision-making about whether to adopt the treatment or not, it may be most desirable (albeit,

possibly difficult) to collapse these outcomes into a single outcome, and include in S only those hypotheses
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involving this aggregate outcome (see, e.g., Heckman et al. (2013)). In many cases, however, it may also

be of interest to determine, with some confidence, which outcomes are affected by the treatment, in which

case all such hypotheses should be included. This may also be useful when there is some ambiguity about

how best to aggregate these multiple outcomes into a single outcome.

(c) Suppose there are multiple treatments, a single outcome, and a single subpopulation. If one wishes

to determine with confidence which treatments differ from the control, then all comparisons with the

control should be included in S. If one wishes to also rank the treatments, then it is natural to include all

pairwise comparisons in S; in this case, however, it may be necessary to control not just the familywise

error rate, but the mixed directional familywise error rate, as in Bazylik et al. (2021); Mogstad et al.

(2022a,b).

Finally, we note that when the number of null hypotheses included in S is large, it may be desirable to

consider alternative error rates that are less demanding than the FWER; for a discussion, see Remark 3.10

in Section 3.

Let P = P (Q) be the distribution of the observed data (Yi, Di, Xi, Zi) , i = 1, . . . , n. We will often suppress

the dependence of P on Q for simplicity. It is useful to introduce the following notation that will be used

repeatedly in the sequel: for k ∈ K, d ∈ D, and z ∈ Z, define

bk|d,z(P ) = VarP [Xi|Di = d, Zi = z]−1 CovP [Xi, Yi,k|Di = d, Zi = z] ,

µk|d,z(P ) = EP [Yi,k|Di = d, Zi = z] .

We now describe our main requirements on Ω.

Assumption 2.1. For each Q ∈ Ω

((Yi(d) : d ∈ D), Xi) ⊥⊥ Di|Zi

under Q.

Assumption 2.2. For each Q ∈ Ω, there is ϵ > 0 such that

Q {Di = d, Zi = z} > ϵ (4)

for all d ∈ D and z ∈ Z.
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Assumption 2.3. For each Q ∈ Ω, VarQ[Xi|Di = d, Zi = z] is invertible,

EQ[XiX
′
i|Di = d, Zi = z] < ∞, and EQ[Y

2
i,k(d)|Di = d, Zi = z] < ∞ ,

for all k ∈ K, d ∈ D, and z ∈ Z.

Assumption 2.4. For each Q ∈ Ω,

VarQ[Yi,k(d)− bk|d,z(P )′Xi|Di = d, Zi = z] > 0 ,

for all k ∈ K, d ∈ D, and z ∈ Z.

Assumption 2.1 requires that treatment status was assigned using simple random sampling. Despite its

simplicity, this treatment assignment scheme remains widely used. We emphasize, however, that it precludes

many other popular treatment assignment schemes, including “matched pairs” and stratified block random-

ization. For relevant results, see Bugni et al. (2018), Bugni et al. (2019) and Bai et al. (2021). We leave the

extension of our results to these other treatment assignment schemes to future work. Assumption 2.2 simply

requires that both Di and Zi are discrete random variables (with finite supports). Assumption 2.3 requires

that there is no perfect multicollinearity among the Xi and that the components of Xi and Yi(d) have at

least two moments. Assumption 2.4 is a mild non-degeneracy requirement.

3. Procedure

In this section, we describe a stepwise multiple testing procedure for testing (1) in a way that satisfies (2)

and (3) for any Q ∈ Ω. In order to do so, we first require some additional notation.

For d ∈ D and z ∈ Z, define nd,z =
∑

1≤i≤n I{Di = d, Zi = z}, nz =
∑

1≤i≤n I{Zi = z}, and

µX|d,z(P ) = EP [Xi|Di = d, Zi = z] ,

µX|z(P ) = EP [Xi|Zi = z] .

Using this notation, and recalling the definitions of µk|d,z(P ) and bk|d,z(P ) in the previous section, we may

define, for each k ∈ K, d ∈ D, and z ∈ Z,

θk|d,z(P ) = µk|d,z(P )− bk|d,z(P )′(µX|d,z(P )− µX|z(P )) ,
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and its sample counterpart

θ̂k|d,z = Ȳk|d,z − b̂′k|d,z(X̄d,z − X̄z) ,

where X̄z = n−1
z

∑n
i=1 XiI {Zi = z}, X̄d,z = n−1

d,z

∑n
i=1 XiI {Di = d, Zi = z}, and

b̂k|d,z =

 ∑
1≤i≤n:Di=d,Zi=z

(Xi − X̄d,z)(Xi − X̄d,z)
′

−1  ∑
1≤i≤n:Di=d,Zi=z

(Xi − X̄d,z)Yi,k

 .

Note that θ̂k|d,z can be obtained as the ordinary least squares estimator of the intercept coefficient in a linear

regression of Yi,k on a constant and Xi − X̄z using only the subsample of data with Di = d, Zi = z.

Now, for each s, we may define an “unbalanced” test statistic for Hs

Ts,n =
√
n
∣∣∣θ̂k|d,z − θ̂k|d′,z

∣∣∣ (5)

and its re-centered version

T̃s,n(P ) =
√
n
∣∣∣(θ̂k|d,z − θk|d,z(P )

)
−
(
θ̂k|d′,z − θk|d′,z(P )

)∣∣∣ (6)

Next, for s ∈ S, define

Jn(x, s, P ) = P
{
T̃s,n(P ) ≤ x

}

In order to achieve “balance,” rather than reject Hs for large values of Ts,n, we reject Hs for large values of

Jn

(
Ts,n, s, P̂n

)
. (7)

Note that (7) is simply one minus a (multiplicity-unadjusted) bootstrap p-value for testing Hs based on Ts,n.

Finally, for S ′ ⊆ S, let

Ln (x,S ′, P ) = P

{
max
s∈S′

Jn

(
T̃s,n(P ), s, P

)
≤ x

}
.

Using this notation and following Romano and Wolf (2010), we may describe our proposed stepwise multiple

testing procedure according to the algorithm below:
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Algorithm 3.1.

Step 0. Set S1 = S.
...

Step j. If Sj = ∅ or

max
s∈Sj

Jn

(
Ts,n, s, P̂n

)
≤ L−1

n

(
1− α,Sj , P̂n

)

then stop. Otherwise, reject any Hs with Jn

(
Ts,n, s, P̂n

)
> L−1

n

(
1− α,Sj , P̂n

)
, set

Sj+1 =
{
s ∈ Sj : Jn

(
Ts,n, s, P̂n

)
≤ L−1

n

(
1− α,Sj , P̂n

)}
,

and continue to the next step.

...

The following theorem describes the asymptotic behavior of our proposed multiple testing procedure.

Theorem 3.1. Consider the procedure for testing (1) given by Algorithm 3.1. Under Assumptions 2.1 - 2.4,

Algorithm 3.1 satisfies (2) and (3) for any Q ∈ Ω.

In order to better understand Algorithm 3.1, it is helpful to view Step j of the algorithm as testing the joint

null hypothesis that Hs holds for all s ∈ Sj using maxs∈Sj Jn

(
Ts,n, s, P̂n

)
as a test statistic (for which large

values provide evidence against the null hypothesis) and the quantity L−1
n

(
1− α,Sj , P̂n

)
as a critical value.

In fact, for any fixed s = (d, d′, z, k) ∈ Sj ,

{
θk|d,z − θk|d′,z : Jn

(√
n
∣∣∣(θ̂k|d,z − θk|d,z

)
−
(
θ̂k|d′,z − θk|d′,z

)∣∣∣ , s, P)
≤ x

}

may be viewed as a confidence interval for θk|d,z − θk|d′,z with coverage probability x. The probability that

these intervals simultaneously contain the true values of θk|d,z−θk|d′,z, for the corresponding s ∈ Sj , is given

by Ln (x,Sj , P ). This suggests that

{(
θk|d,z − θk|d′,z : s ∈ Sj

)
:

max
s∈Sj

Jn

(√
n
∣∣∣(θ̂k|d,z − θk|d,z

)
−
(
θ̂k|d′,z − θk|d′,z

)∣∣∣ , s, P̂n

)
≤ L−1

n

(
1− α,Sj , P̂n

)}
,

which employs the bootstrap to estimate Jn(x, s, P ) and Ln(x,Sj , P ), is a (simultaneous) confidence region

for (θk|d,z − θk|d′,z : s ∈ Sj) with coverage probability (approximately) 1− α. For further discussion of such
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simultaneous confidence regions, see Sections 1.4 and 2.2 of Beran (1990), and Section 3 of Romano and

Wolf (2010).

Remark 3.1. As mentioned previously, our point of departure from List et al. (2019) is the use of Xi to

obtain more powerful inferences. Ye et al. (2022) show that inferences based on θ̂k|d,z − θ̂k|d′,z are always

at least as powerful as those based on a simple difference in means in the following sense: Corollary 1 of Ye

et al. (2022) shows that the variance of the limiting distribution of
√
n(θ̂k|d,z − θ̂k|d′,z) is no greater than

the variance of the limiting distribution of
√
n(Ȳk|d,z − Ȳk|d′,z) and the comparison is strict unless Xi is

uncorrelated with Yi(d) and Yi(d
′). Therefore, our choice of test statistic makes use of covariates in a way

that typically leads to substantially more powerful inferences, at least in large samples, when compared to

the simple difference-in-means test statistics of List et al. (2019). Negi and Wooldridge (2020) obtain similar

results in a binary treatment setting. Earlier antecedents studying regression adjustment of experimental

data include Yang and Tsiatis (2001) and Tsiatis et al. (2008). For related results in a finite population

setting, see Lin (2013) and Berk et al. (2013).

Remark 3.2. If S = {s}, i.e., S is a singleton, then the familywise error rate is simply the usual probability

of a Type I error. Hence, Algorithm 3.1 provides asymptotic control of the probability of a Type I error. In

this case, Algorithm 3.1 is equivalent to the usual bootstrap test of Hs, i.e., the test that rejects Hs whenever

Ts,n > J−1
n

(
1− α, s, P̂n

)
.

Remark 3.3. As noted above, p̂s,n = 1 − Jn

(
Ts,n, s, P̂n

)
may be interpreted as a bootstrap p-value for

testing Hs. Indeed, for any Q ∈ ωs, it is possible to show that

lim sup
n→∞

Q {p̂s,n ≤ u} ≤ u

for any 0 < u < 1. A crude solution to the multiplicity problem would therefore be to apply a Bonferroni

or Holm correction to these p-values. Such an approach would indeed satisfy (2), as desired, but implicitly

relies upon a “least favorable” dependence structure among the p-values. To the extent that the true

dependence structure differs from this “least favorable” one, improvements may be possible. Algorithm

3.1 uses the bootstrap to implicitly incorporate information about the dependence structure when deciding

which null hypotheses to reject. In fact, since assuming any particular dependence structure is always at

least as powerful as assuming a “least favorable” one, Algorithm 3.1 will always reject at least as many

null hypotheses as these procedures, even in finite samples, while still maintaining asymptotic control of the

familywise error rate.
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Remark 3.4. Implementation of Algorithm 3.1 typically requires approximating the quantities Jn

(
x, s, P̂n

)
and Ln

(
x,S ′, P̂n

)
using simulation. As noted by Romano and Wolf (2010), doing so does not require nested

bootstrap simulations. To explain further, for b = 1, . . . , B, draw a sample of size n from P̂n and denote by

T̃ ∗,b
s,n

(
P̂n

)
the quantity T̃s,n(P ) using the b-th resample and P̂n as an estimate of P. Then, Jn

(
x, s, P̂n

)
may

be approximated as

Ĵn

(
x, s, P̂n

)
=

1

B

∑
1≤b≤B

I
{
T̃ ∗b
s,n

(
P̂n

)
≤ x

}

and Ln

(
x,S ′, P̂n

)
may be approximated as

L̂n

(
x,S ′, P̂n

)
=

1

B

∑
1≤b≤B

I

{
max
s∈S′

Ĵn

(
T̃ ∗b
s,n

(
P̂n

)
, s, P̂n

)
≤ x

}

In particular, the same set of bootstrap resamples may be used in the two approximations.

Remark 3.5. It is often desirable to studentize, i.e., to replace Ts,n and T̃s,n(P ), respectively, with

T stud
s,n =

Ts,n√
σ̃2
s,n

(
P̂n

) and T̃ stud
s,n (P ) =

T̃s,n(P )√
σ̃2
s,n

(
P̂n

) ,

where

σ̃2
s,n (P ) =

S2
k|d,z (P )

P{Di = d, Zi = z}
+

S2
k|d′,z (P )

P{Di = d′, Zi = z}
+

(
bk|d,z(P )− bk|d′,z(P )

)′ VarP [Xi|Zi = z]

P{Zi = z}
(
bk|d,z(P )− bk|d′,z(P )

)
and S2

k|d,z (P ) = VarP
[
Yi,k − bk|d,z(P )′Xi|Di = d, Zi = z

]
. Theorem 3.1 continues to hold with these

changes.

Remark 3.6. In some cases, it may be of interest to consider one-sided null hypotheses, e.g., H−
s : P ∈ ω−

s

where

ω−
s = {Q ∈ Ω : EQ [Yi,k(d)− Yi,k (d

′) |Zi = z] ≤ 0} (8)

In this case, it suffices simply to replace Tsn and T̃sn(P ), respectively, with T−
s,n and T̃−

s,n(P ), which are,

respectively, defined as in (5) and (6), but without the absolute values. An analogous modification can be

made for null hypotheses H+
s : P ∈ ω+

s , where ω+
s is defined as in (8), but with the inequality reversed.
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Remark 3.7. Note that a multiplicity-adjusted p-value forHs, p̂
adj
s,n ,may be computed simply as the smallest

value of α for which Hs is rejected in Algorithm 3.1.

Remark 3.8. It is possible to improve Algorithm 3.1 by exploiting transitivity (i.e., µk|d,z(Q) = µk|d′,z(Q)

and µk|d′,z(Q) = µk|d′′,z(Q) implies that µk|d,z(Q) = µk|d′′,z(Q)
)
. To this end, for S ′ ⊆ S, define

S (S ′) = {S ′′ ⊆ S ′ : ∃Q ∈ Ω s.t. S ′′ = S0(Q)}

and replace L−1
n

(
1− α,Sj , P̂n

)
in Algorithm 3.1 with

max
S̃∈S(Sj)

L−1
n

(
1− α, S̃, P̂n

)

With this modification to Algorithm 3.1, Theorem 3.1 remains valid. Note that this modification is only

non-trivial when there are more than two treatments and may be computationally prohibitive when there

are more than a few treatments.

Remark 3.9. Note that we only require that the familywise error rate is asymptotically no greater than α

for each Q ∈ Ω. By appropriately strengthening the assumptions of Theorem 3.1, it is possible to show that

Algorithm 3.1 satisfies

lim sup
n→∞

sup
Q∈Ω

FWERQ ≤ α

In particular, it suffices to replace Assumption 2.3 with a mild uniform integrability requirement and require

in Assumption 2.2 that there exists ϵ > 0 for which (4) holds for all Q ∈ Ω, d ∈ D and z ∈ Z. Relevant

results for establishing this claim can be found in Romano and Shaikh (2012), Bhattacharya et al. (2012),

and Machado et al. (2019).

Remark 3.10. In some settings, it may be desirable to only control the probability of making k or more

false rejections, for some k > 1; i.e., only require that, for all Q ∈ Ω,

lim sup
n→∞

k-FWERQ ≤ α ,

where

k-FWERQ := Q { reject at least k hypotheses Hs with s ∈ S0(Q)} .

11



In this notation, Algorithm 3.1 controls the 1-FWER. Corollary 5.1 in Romano and Wolf (2010) implies that,

under the same assumptions as Theorem 3.1, it is possible to adapt Algorithm 3.1 to asymptotically control

the k-FWER instead, for k > 1. For more details on how to modify Algorithm 3.1 in this way, see Algorithm

4.1 and subsequent discussion in Romano and Wolf (2010). Further, Theorem 8.1 in Romano and Wolf

(2010) implies that such an Algorithm 3.1-based k-FWER control procedure can be sequentially applied to

asymptotically control (the tail probability of) the false discovery proportion (FDP); i.e., to ensure that, for

a specific γ ∈ [0, 1) and all Q ∈ Ω,

lim sup
n→∞

Q {FDP > γ} ≤ α ,

where

FDP =


0 if no hypotheses rejected

number of rejected hypotheses Hs with s∈S0(Q)
total number of rejected hypotheses otherwise

.

Note that Algorithm 3.1 controls the FDP with γ = 0. For details on how to sequentially apply k-FWER

control procedures to control the FDP for γ > 0, see Algorithm 8.1 in Romano and Wolf (2010).

A related, and popular, approach to controlling false rejections is to control the false discovery rate (FDR),

which requires that, for all Q ∈ Ω,

FDR = EQ [FDP] ≤ α .

Unlike error control approaches based on controlling the k-FWER or the FDP, which provide information

about the realized number or proportion of false rejections, controlling the FDR only provides such infor-

mation indirectly through, e.g., bounds on the tail probability of the FDP obtained via Markov’s inequality:

controlling the FDR at level α implies that Q {FDP > γ} ≤ min
{
1, α

γ

}
; see, e.g., Romano and Shaikh

(2006). Thus, even if the FDR is controlled at level α, the tail probability of the FDP may remain high. For

this reason, we do not consider error control based on the FDR in this paper, and instead suggest methods

based on the k-FWER or the FDP in settings where controlling the FWER may be too demanding. For

some relevant results on asymptotic control of the FDR, however, we refer readers to Romano et al. (2008a).
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4. Empirical Applications

In this section, we apply our testing methodology to the large-scale natural field experiment presented in

Karlan and List (2007). Before proceeding, we briefly summarize the main features of the experiment.

Using direct mail solicitations targeted to previous donors of a nonprofit organization, Karlan and List

(2007) study the effectiveness of a matching grant on charitable giving. The sample consists of all 50,083

individuals who had given to the organization at least once since 1991. Each individual was independently

assigned with probability two-thirds to a treatment group (33,396, or 66.68 percent of the sample) and with

probability one-third to a control group (16,687 subjects, or 33.32 percent of the sample). Individuals in

the treatment group were then offered independently and with equal probability one of 36 possible matching

grants, whose specifics varied along three dimensions: the price ratio of the match, the maximum size of

the matching gift across all donations, and the example donation amount suggested to the donor. The

three possible values for the price ratio of the match were $1:$1, $2:$1, and $3:$1. An $X:$1 ratio means

that for every dollar the individual donates, the matching donor also contributes $X; hence, the charity

receives $X+1 (subject to the maximum amount across all donations). There were four possible values for

the maximum matching grant amount: $25,000, $50,000, $100,000, and unstated. The three possible values

for the individual-specific suggested amounts were the individual’s highest previous contribution, 1.25 times

the highest previous contribution, and 1.50 times the highest previous contribution.

In the following three subsections, we first consider testing families of null hypotheses that emerge in this

application due to multiple outcomes alone, multiple subgroups alone and multiple treatments alone. In

the final subsection, we then consider testing the family of null hypotheses that emerges by combining all

three considerations at the same time. In each case, we consider inference based on Theorem 3.1 using

the studentized test statistics described in Remark 3.5 and controlling for a suite of observed, baseline

characteristics. Specifically, we control for a number of individual-level characteristics (including sex, number

of years since initial donation, and whether they had already donated in 2005), zip-code level demographics

(including average household size, proportion of white and black residents, proportion of residents aged

between 18 and 39), and measures of state-level activity of the organization. We also compare our results with

those obtained using the classical Bonferroni and Holm multiple testing procedures. In order to emphasize

the magnitude of the potential gains in power from properly exploiting observed, baseline covariates, we also

present results without exploiting such information, as in List et al. (2019). We also provide an illustration

of the potential gains in power from exploiting transitivity restrictions as described in Remark 3.8.
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Table 1: Multiple Outcomes, without covariates

Outcome Coeff. p-values
Unadjusted Multiplicity Adjusted
Remark 3.2 Theorem 3.1 Bonferroni Holm

Response Rate 0.0049 0.0003∗∗∗ 0.0003∗∗∗ 0.0013∗∗∗ 0.0010∗∗∗

Dollars Given Not Including Match 0.1831 0.0263∗∗ 0.0517∗ 0.1053 0.0527∗

Dollars Given Including Match 2.1740 0.0003∗∗∗ 0.0003∗∗∗ 0.0013∗∗∗ 0.0013∗∗∗

Amount Change 6.8533 0.7150 0.7150 1.0000 0.7150

∗, ∗∗, and ∗∗∗ indicate that the corresponding p-values are less than 10%, 5%, and 1%, respectively. As noted above, these
values are computed using only the sub-sample with all covariates and subgroup identifiers available, and may differ from
the corresponding values in List et al. (2019)

Table 2: Multiple Outcomes, with covariates

Outcome Coeff. p-values
Unadjusted Multiplicity Adjusted
Remark 3.2 Theorem 3.1 Bonferroni Holm

Response Rate 0.0049 0.0003∗∗∗ 0.0003∗∗∗ 0.0013∗∗∗ 0.0013∗∗∗

Dollars Given Not Including Match 0.1835 0.0260∗∗ 0.0510∗ 0.1040 0.0520∗

Dollars Given Including Match 2.1744 0.0003∗∗∗ 0.0003∗∗∗ 0.0013∗∗∗ 0.0010∗∗∗

Amount Change 7.3908 0.6640 0.6640 1.0000 0.6640
∗, ∗∗, and ∗∗∗ indicate that the corresponding p-values are less than 10%, 5%, and 1%, respectively

In order to ensure that the results in each table are based on the same sample, we compute our results using

the 46,521 individuals for whom all covariates and subgroup identifiers are available. The resulting sample

is a subset of the full sample used in List et al. (2019), but maintains very similar treatment proportions,

with 31,021 individuals, or 66.68 percent of the remaining sample, being assigned to treatment, and 15,500

individuals, or 33.32 percent of the remaining sample, being assigned to control. The percentages of treatment

units assigned a specific match offer are also very similar across the full sample and the selected sample.

Stata code used to produce these results, including the sample selection, is available at the following address:

https://github.com/vayalinkal/mhtexp2/tree/main/replication.

4.1. Multiple Outcomes

We assess the effects of the treatment on the four outcome variables of interest in Karlan and List (2007):

response rate, dollars given not including match, dollars given including match, and amount change. Here,

by treatment, we mean receiving any of the 36 possible matching grants. Tables 1 and 2 display, for each of

the four outcomes of interest, the following five quantities: column 2 displays the difference in means between

the treated and the untreated subjects for the four outcomes. Column 3 displays a (multiplicity-unadjusted)

p-value computed using Remark 3.2; column 4 displays a (multiplicity-adjusted) p-value computed using

Theorem 3.1. Column 5 displays a (multiplicity-adjusted) p-value obtained by applying a Bonferroni adjust-

ment to the p-values in column 3; column 6 displays a (multiplicity-adjusted) p-value obtained by applying
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Table 3: Multiple Subgroups, without covariates

Subgroup Coeff. p-values
Unadjusted Multiplicity Adjusted
Remark 3.2 Theorem 3.1 Bonferroni Holm

Red County, Red State 0.0108 0.0003∗∗∗ 0.0003∗∗∗ 0.0013∗∗∗ 0.0013∗∗∗

Blue County, Red State 0.0083 0.0193∗∗ 0.0567∗ 0.0773∗ 0.0580∗

Red County, Blue State 0.0024 0.2913 0.4960 1.0000 0.5827
Blue County, Blue State 0.0000 0.9900 0.9900 1.0000 0.9900

∗, ∗∗, and ∗∗∗ indicate that the corresponding p-values are less than 10%, 5%, and 1%, respectively. As noted
above, these values are computed using only the sub-sample with all covariates and subgroup identifiers
available, and may differ from the corresponding values in List et al. (2019)

Table 4: Multiple Subgroups, with covariates

Subgroup Coeff. p-values
Unadjusted Multiplicity Adjusted
Remark 3.2 Theorem 3.1 Bonferroni Holm

Red County, Red State 0.0108 0.0003∗∗∗ 0.0003∗∗∗ 0.0013∗∗∗ 0.0013∗∗∗

Blue County, Red State 0.0083 0.0180∗∗ 0.0527∗ 0.0720∗ 0.0540∗

Red County, Blue State 0.0025 0.2797 0.4813 1.0000 0.5593
Blue County, Blue State -0.0000 0.9987 0.9987 1.0000 0.9987
∗, ∗∗, and ∗∗∗ indicate that the corresponding p-values are less than 10%, 5%, and 1%, respectively

a Holm adjustment to the p-values in column 3. Table 1 reports the results when we do not include controls

for any covariates, whereas Table 2 reports results with controls for covariates included.

Comparing the second column of Tables 1 and 2, we see that for each outcome the estimated treatment effect

is weakly larger when we include controls. Moreover, both the unadjusted p-values and the adjusted p-values

based on Theorem 3.1 in Table 2 are weakly smaller than their corresponding p-values in Table 1. In both

tables, the p-values in column 3, which do not take multiplicity into account, indicate that the treatment has

a significant effect on response rate, dollars given not including match, and dollars given including match,

at the 0.05 level. Once we take multiplicity into account, however, column 4 of Tables 1 and 2 suggests that

the effect of the “match” treatment on dollars given not including match is no longer significant at the 0.05

level, only remaining significant at the 0.10 level.

Importantly, because of the incorporation of information about the joint dependence structure of the test

statistics when determining which null hypotheses to reject, the p-values from Theorem 3.1 are an improve-

ment upon those obtained by applying Bonferroni or Holm adjustments. This feature is evident in both

Table 1 and Table 2 as the p-values in column 4 are always weakly smaller than the p-values in columns 5

and 6.
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Table 5: Multiple Treatments with a Control, without covariates

Comparison Groups Coeff. p-values
Unadjusted Multiplicity Adjusted
Remark 3.2 Theorem 3.1 Bonferroni Holm

1:1 vs Control 0.1228 0.2547 0.2547 0.7640 0.2547
2:1 vs Control 0.2566 0.0273∗∗ 0.0747∗ 0.0820∗ 0.0820∗

3:1 vs Control 0.1703 0.1130 0.2050 0.3390 0.2260

∗ and ∗∗ indicate that the corresponding p-values are less than 10% and 5%, respectively. As noted
above, these values are computed using only the sub-sample with all covariates and subgroup
identifiers available, and may differ from the corresponding values in List et al. (2019)

4.2. Multiple Subgroups

The four subgroups of interest in Karlan and List (2007) are red county in a red state, blue county in a red

state, red county in a blue state, and blue county in a blue state. Red states are defined as states that voted

for George W. Bush in the 2004 Presidential election and blue states are defined as states that voted for John

Kerry in the same election. Red and blue counties are defined analogously. As in the preceding subsection,

by treatment, we mean receiving any of the 36 possible matching grants. We focus on a single outcome

variable, namely the response rate. Tables 3 and 4 display, for each of the four subgroups of interest, the

five quantities similar to those in Tables 1 and 2.

Compared to p-values that do not take multiplicity into account, the multiplicity-adjusted p-values indicate

that, after accounting for multiple testing, the treatment may only have an effect among a smaller number

of subgroups. In particular, the values in column 3, which do not account for multiple testing, indicate that

the treatment has a significant effect, at the 0.05 level, on response rate among the subgroups “Red County

in a Red State” and “Blue County in a Red State”, with and without controls. After taking the multiplicity

issue into account, however, column 4 of each table suggests that the treatment effect for the subgroup “Blue

County in a Red State” only maintains significance at the 0.10 level. Once again, we see that the procedure

described in Theorem 3.1 is more powerful than the Bonferroni and Holm procedures, as the p-values in

column 4 are always weakly smaller than the p-values in columns 5 and 6.

We also see that, with controls included, almost all of the estimated effects are weakly larger, and have

weakly smaller p-values. The only exception is the estimated effect of the treatment on response rate for the

subgroup “Blue County in a Blue State”, which is very small and statistically insignificant in both cases,

but has slightly larger p-values (adjusted and unadjusted) and a smaller estimated effect (in both signed and

absolute values) when controls are included.
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Table 6: Multiple Treatments with a Control, with covariates

Comparison Groups Coeff. p-values
Unadjusted Multiplicity Adjusted
Remark 3.2 Theorem 3.1 Bonferroni Holm

1:1 vs Control 0.1289 0.2347 0.2347 0.7040 0.2347
2:1 vs Control 0.2564 0.0277∗∗ 0.0760∗ 0.0830∗ 0.0830∗

3:1 vs Control 0.1675 0.1140 0.2067 0.3420 0.2280
∗ and ∗∗ indicate that the corresponding p-values are less than 10% and 5%, respectively

Table 7: All Pairwise Comparisons across Multiple Treatments and a Control, no covariates

Comparison Groups Coeff. p-values
Unadjusted Multiplicity Adjusted
Remark 3.2 Theorem 3.1 Remark 3.8 Bonferroni Holm

1:1 vs Control 0.1228 0.2547 0.5790 0.4917 1.0000 1.0000
2:1 vs Control 0.2566 0.0273∗∗ 0.1210 0.1210 0.1640 0.1640
3:1 vs Control 0.1703 0.1130 0.3537 0.2537 0.6780 0.5650
2:1 vs 1:1 0.1338 0.3043 0.5597 0.5597 1.0000 0.9130
3:1 vs 1:1 0.0475 0.7127 0.7127 0.7127 1.0000 0.7127
3:1 vs 2:1 -0.0863 0.4947 0.7190 0.4947 1.0000 0.9893

∗∗ indicates that the corresponding p-values are less than 5%. As noted above, these values are computed using only
the sub-sample with all covariates and subgroup identifiers available, and may differ from the corresponding values
in List et al. (2019)

4.3. Multiple Treatments

We now consider null hypotheses that emerge due to multiple treatments. We focus on the three treatments

on matching-ratio dimension: 1:1, 2:1, and 3:1. We consider “dollars given not including match” as our

outcome of interest.

We first consider the comparison of each treatment with the control. For each of the three treatments,

Tables 5 and 6 display the five quantities as described previously. The first table displays the results without

controls while the latter displays results with controls. Comparing these two tables, we see that the estimated

treatment effect for the 1:1 match ratio is larger when controls are included, leading to smaller p-values, while

the estimated treatment effect of the 2:1 and 3:1 match ratios are smaller, and the corresponding p-values

slightly larger, when controls are included.

In each table, the values in column 3, which do not take multiplicity into account, suggest that the match

ratio 2:1 has a significant effect on the outcome “dollars given not including match”, at the 0.05 level.

Nonetheless, as shown in column 4, the treatment effect is much less significant after applying Theorem

3.1 to this problem; in both cases, it remains significant only at the 0.10 level. Again, in both cases, the

empirical results confirm that the p-values from Theorem 3.1 improve upon those obtained by applying the

Bonferroni or Holm procedure.
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Table 8: All Pairwise Comparisons across Multiple Treatments and a Control, with covariates

Comparison Groups Coeff. p-values
Unadjusted Multiplicity Adjusted
Remark 3.2 Theorem 3.1 Remark 3.8 Bonferroni Holm

1:1 vs Control 0.1289 0.2347 0.5473 0.4600 1.0000 0.9387
2:1 vs Control 0.2564 0.0277∗∗ 0.1233 0.1233 0.1660 0.1660
3:1 vs Control 0.1675 0.1140 0.3547 0.2557 0.6840 0.5700
2:1 vs 1:1 0.1275 0.3253 0.5877 0.5877 1.0000 0.9760
3:1 vs 1:1 0.0387 0.7647 0.7647 0.7647 1.0000 0.7647
3:1 vs 2:1 -0.0888 0.4743 0.7013 0.4743 1.0000 0.9487
∗∗ indicates that the corresponding p-values are less than 5%

We now consider all pairwise comparisons among the treatments and control. For each of the six pairwise

comparisons, Tables 7 and 8 present the corresponding five quantities as well as the p-values described in

Remark 3.8. The first table displays the results without controls while the latter displays results with controls.

Unlike all the other empirical applications, Remark 3.8 becomes non-trivial in this scenario. Recall that

Remark 3.8 may improve upon Theorem 3.1 by exploiting transitivity. Indeed, among all of the multiplicity

adjustments considered in Tables 7 and 8, the procedure described in Remark 3.8 appears to be the most

powerful approach.

Examining the adjusted p-values (as given in columns 4 and 5) in the two tables, we see that the treatment

effect based on the pairwise comparison between the control and the match ratio 2:1 becomes negligible in

both cases. We also notice that the (multiplicity-adjusted) p-values in columns 4, 5, and 6 of Tables 5 and

6 are always smaller than their counterparts in Table 7 and 8, respectively, suggesting that the multiple

testing problem can often become more severe with a larger number of hypotheses.

4.4. Multiple Outcomes, Subgroups, and Treatments

In many cases, experimentalists wish to consider families of null hypotheses that involve multiple outcomes,

multiple subgroups, and multiple treatments simultaneously (as in Karlan and List (2007)). In this sub-

section, we simultaneously consider the four outcome variables described in Section 4.1, the four subgroups

described in Section 4.2, and the three treatment conditions described in Section 4.3. For each outcome and

subgroup, we compare all of the treatments to the control group.

For each of the resulting 48 null hypotheses, Table 9 displays the corresponding five quantities estimated

without controlling for covariates, and Table 10 displays the same quantities estimated with controls for

covariates included. Similar to our previous discussion, we find that, in both cases, many of the treatment

effects are no longer significant after accounting for multiple testing. Given such a large number of null

hypotheses, we can see that ignoring the multiplicity of the comparisons being made would deflate the p-
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Table 9: Multiple Outcomes, Subgroups, and Treatments, without covariates
Outcome Subgroup Comp. Groups Coeff. p-values

Unadjusted Multiplicity Adjusted
Remark 3.2 Theorem 3.1 Bonferroni Holm

Response Rate Red County, Red State 1:1 vs Control 0.0098 0.0077∗∗∗ 0.2067 0.3680 0.2913
Response Rate Red County, Red State 2:1 vs Control 0.0102 0.0040∗∗∗ 0.1187 0.1920 0.1600
Response Rate Red County, Red State 3:1 vs Control 0.0123 0.0010∗∗∗ 0.0240∗∗ 0.0480∗∗ 0.0440∗∗

Response Rate Blue County, Red State 1:1 vs Control 0.0027 0.5523 1.0000 1.0000 1.0000
Response Rate Blue County, Red State 2:1 vs Control 0.0098 0.0497∗∗ 0.7380 1.0000 1.0000
Response Rate Blue County, Red State 3:1 vs Control 0.0123 0.0120∗∗ 0.2953 0.5760 0.4200
Response Rate Red County, Blue State 1:1 vs Control 0.0010 0.7017 1.0000 1.0000 1.0000
Response Rate Red County, Blue State 2:1 vs Control 0.0020 0.5033 1.0000 1.0000 1.0000
Response Rate Red County, Blue State 3:1 vs Control 0.0042 0.1680 0.9730 1.0000 1.0000
Response Rate Blue County, Blue State 1:1 vs Control -0.0006 0.8803 1.0000 1.0000 1.0000
Response Rate Blue County, Blue State 2:1 vs Control 0.0030 0.4793 1.0000 1.0000 1.0000
Response Rate Blue County, Blue State 3:1 vs Control -0.0021 0.5637 1.0000 1.0000 1.0000
Dollars Given Not Incl. Match Red County, Red State 1:1 vs Control 0.5128 0.0567∗ 0.7637 1.0000 1.0000
Dollars Given Not Incl. Match Red County, Red State 2:1 vs Control 0.4567 0.0523∗ 0.7453 1.0000 1.0000
Dollars Given Not Incl. Match Red County, Red State 3:1 vs Control 0.3606 0.0610∗ 0.7713 1.0000 1.0000
Dollars Given Not Incl. Match Blue County, Red State 1:1 vs Control -0.0239 0.9393 0.9973 1.0000 1.0000
Dollars Given Not Incl. Match Blue County, Red State 2:1 vs Control 0.4894 0.1523 0.9633 1.0000 1.0000
Dollars Given Not Incl. Match Blue County, Red State 3:1 vs Control 0.6128 0.0910∗ 0.8783 1.0000 1.0000
Dollars Given Not Incl. Match Red County, Blue State 1:1 vs Control 0.0215 0.8997 1.0000 1.0000 1.0000
Dollars Given Not Incl. Match Red County, Blue State 2:1 vs Control 0.1466 0.4393 1.0000 1.0000 1.0000
Dollars Given Not Incl. Match Red County, Blue State 3:1 vs Control 0.0616 0.7263 1.0000 1.0000 1.0000
Dollars Given Not Incl. Match Blue County, Blue State 1:1 vs Control -0.0811 0.7207 1.0000 1.0000 1.0000
Dollars Given Not Incl. Match Blue County, Blue State 2:1 vs Control 0.0745 0.7557 1.0000 1.0000 1.0000
Dollars Given Not Incl. Match Blue County, Blue State 3:1 vs Control -0.1303 0.5297 1.0000 1.0000 1.0000
Dollars Given Incl. Match Red County, Red State 1:1 vs Control 1.6793 0.0090∗∗∗ 0.2370 0.4320 0.3330
Dollars Given Incl. Match Red County, Red State 2:1 vs Control 2.6773 0.0003∗∗∗ 0.0003∗∗∗ 0.0160∗∗ 0.0160∗∗

Dollars Given Incl. Match Red County, Red State 3:1 vs Control 3.4035 0.0003∗∗∗ 0.0003∗∗∗ 0.0160∗∗ 0.0150∗∗

Dollars Given Incl. Match Blue County, Red State 1:1 vs Control 0.7603 0.0937∗ 0.8787 1.0000 1.0000
Dollars Given Incl. Match Blue County, Red State 2:1 vs Control 3.0846 0.0037∗∗∗ 0.1103 0.1760 0.1503
Dollars Given Incl. Match Blue County, Red State 3:1 vs Control 4.8758 0.0070∗∗∗ 0.1940 0.3360 0.2730
Dollars Given Incl. Match Red County, Blue State 1:1 vs Control 0.8424 0.0090∗∗∗ 0.2360 0.4320 0.3240
Dollars Given Incl. Match Red County, Blue State 2:1 vs Control 2.0387 0.0003∗∗∗ 0.0003∗∗∗ 0.0160∗∗ 0.0157∗∗

Dollars Given Incl. Match Red County, Blue State 3:1 vs Control 2.6444 0.0003∗∗∗ 0.0003∗∗∗ 0.0160∗∗ 0.0153∗∗

Dollars Given Incl. Match Blue County, Blue State 1:1 vs Control 0.8164 0.0263∗∗ 0.5237 1.0000 0.8953
Dollars Given Incl. Match Blue County, Blue State 2:1 vs Control 2.1807 0.0027∗∗∗ 0.0780∗ 0.1280 0.1120
Dollars Given Incl. Match Blue County, Blue State 3:1 vs Control 2.4146 0.0013∗∗∗ 0.0347∗∗ 0.0640∗ 0.0573∗

Amount Change Red County, Red State 1:1 vs Control 1.9925 0.1050 0.9027 1.0000 1.0000
Amount Change Red County, Red State 2:1 vs Control 0.1360 0.9070 1.0000 1.0000 1.0000
Amount Change Red County, Red State 3:1 vs Control 0.4979 0.6983 1.0000 1.0000 1.0000
Amount Change Blue County, Red State 1:1 vs Control 98.9408 0.4500 1.0000 1.0000 1.0000
Amount Change Blue County, Red State 2:1 vs Control 101.0547 0.4500 1.0000 1.0000 1.0000
Amount Change Blue County, Red State 3:1 vs Control 101.4029 0.4500 1.0000 1.0000 1.0000
Amount Change Red County, Blue State 1:1 vs Control -55.2064 0.4443 1.0000 1.0000 1.0000
Amount Change Red County, Blue State 2:1 vs Control 0.1886 0.8600 1.0000 1.0000 1.0000
Amount Change Red County, Blue State 3:1 vs Control 1.1256 0.2733 0.9970 1.0000 1.0000
Amount Change Blue County, Blue State 1:1 vs Control 1.1837 0.3410 1.0000 1.0000 1.0000
Amount Change Blue County, Blue State 2:1 vs Control -0.0524 0.9717 0.9717 1.0000 0.9717
Amount Change Blue County, Blue State 3:1 vs Control 0.4172 0.7333 1.0000 1.0000 1.0000

∗, ∗∗, and ∗∗∗ indicate that the corresponding p-values are less than 10%, 5%, and 1%, respectively. As noted above, these values are computed using only the

sub-sample with all covariates and subgroup identifiers available, and may differ from the corresponding values in List et al. (2019)
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Table 10: Multiple Outcomes, Subgroups, and Treatments, with covariates
Outcome Subgroup Comp. Groups Coeff. p-values

Unadjusted Multiplicity Adjusted
Remark 3.2 Theorem 3.1 Bonferroni Holm

Response Rate Red County, Red State 1:1 vs Control 0.0100 0.0053∗∗∗ 0.1563 0.2560 0.2133
Response Rate Red County, Red State 2:1 vs Control 0.0100 0.0060∗∗∗ 0.1710 0.2880 0.2340
Response Rate Red County, Red State 3:1 vs Control 0.0122 0.0013∗∗∗ 0.0373∗∗ 0.0640∗ 0.0587∗

Response Rate Blue County, Red State 1:1 vs Control 0.0029 0.5213 1.0000 1.0000 1.0000
Response Rate Blue County, Red State 2:1 vs Control 0.0100 0.0460∗∗ 0.7107 1.0000 1.0000
Response Rate Blue County, Red State 3:1 vs Control 0.0124 0.0127∗∗ 0.3107 0.6080 0.4433
Response Rate Red County, Blue State 1:1 vs Control 0.0010 0.7003 1.0000 1.0000 1.0000
Response Rate Red County, Blue State 2:1 vs Control 0.0022 0.4473 1.0000 1.0000 1.0000
Response Rate Red County, Blue State 3:1 vs Control 0.0044 0.1570 0.9683 1.0000 1.0000
Response Rate Blue County, Blue State 1:1 vs Control -0.0002 0.9413 0.9413 1.0000 0.9413
Response Rate Blue County, Blue State 2:1 vs Control 0.0031 0.4533 1.0000 1.0000 1.0000
Response Rate Blue County, Blue State 3:1 vs Control -0.0025 0.5067 1.0000 1.0000 1.0000
Dollars Given Not Incl. Match Red County, Red State 1:1 vs Control 0.5161 0.0580∗ 0.7733 1.0000 1.0000
Dollars Given Not Incl. Match Red County, Red State 2:1 vs Control 0.4328 0.0610∗ 0.7763 1.0000 1.0000
Dollars Given Not Incl. Match Red County, Red State 3:1 vs Control 0.3504 0.0713∗ 0.8167 1.0000 1.0000
Dollars Given Not Incl. Match Blue County, Red State 1:1 vs Control -0.0314 0.9090 0.9940 1.0000 1.0000
Dollars Given Not Incl. Match Blue County, Red State 2:1 vs Control 0.4814 0.1570 0.9713 1.0000 1.0000
Dollars Given Not Incl. Match Blue County, Red State 3:1 vs Control 0.6199 0.0980∗ 0.8953 1.0000 1.0000
Dollars Given Not Incl. Match Red County, Blue State 1:1 vs Control 0.0254 0.8820 1.0000 1.0000 1.0000
Dollars Given Not Incl. Match Red County, Blue State 2:1 vs Control 0.1582 0.4023 1.0000 1.0000 1.0000
Dollars Given Not Incl. Match Red County, Blue State 3:1 vs Control 0.0725 0.6840 1.0000 1.0000 1.0000
Dollars Given Not Incl. Match Blue County, Blue State 1:1 vs Control -0.0630 0.7757 1.0000 1.0000 1.0000
Dollars Given Not Incl. Match Blue County, Blue State 2:1 vs Control 0.0958 0.6943 1.0000 1.0000 1.0000
Dollars Given Not Incl. Match Blue County, Blue State 3:1 vs Control -0.1381 0.4987 1.0000 1.0000 1.0000
Dollars Given Incl. Match Red County, Red State 1:1 vs Control 1.6947 0.0090∗∗∗ 0.2347 0.4320 0.3240
Dollars Given Incl. Match Red County, Red State 2:1 vs Control 2.6234 0.0003∗∗∗ 0.0003∗∗∗ 0.0160∗∗ 0.0157∗∗

Dollars Given Incl. Match Red County, Red State 3:1 vs Control 3.3892 0.0003∗∗∗ 0.0003∗∗∗ 0.0160∗∗ 0.0150∗∗

Dollars Given Incl. Match Blue County, Red State 1:1 vs Control 0.7470 0.0997∗ 0.8913 1.0000 1.0000
Dollars Given Incl. Match Blue County, Red State 2:1 vs Control 3.0635 0.0040∗∗∗ 0.1207 0.1920 0.1640
Dollars Given Incl. Match Blue County, Red State 3:1 vs Control 4.9089 0.0073∗∗∗ 0.1973 0.3520 0.2787
Dollars Given Incl. Match Red County, Blue State 1:1 vs Control 0.8465 0.0087∗∗∗ 0.2287 0.4160 0.3207
Dollars Given Incl. Match Red County, Blue State 2:1 vs Control 2.0659 0.0003∗∗∗ 0.0003∗∗∗ 0.0160∗∗ 0.0153∗∗

Dollars Given Incl. Match Red County, Blue State 3:1 vs Control 2.6770 0.0003∗∗∗ 0.0003∗∗∗ 0.0160∗∗ 0.0160∗∗

Dollars Given Incl. Match Blue County, Blue State 1:1 vs Control 0.8458 0.0233∗∗ 0.4790 1.0000 0.7933
Dollars Given Incl. Match Blue County, Blue State 2:1 vs Control 2.2308 0.0030∗∗∗ 0.0880∗ 0.1440 0.1260
Dollars Given Incl. Match Blue County, Blue State 3:1 vs Control 2.3627 0.0013∗∗∗ 0.0363∗∗ 0.0640∗ 0.0573∗

Amount Change Red County, Red State 1:1 vs Control 1.8142 0.1507 0.9697 1.0000 1.0000
Amount Change Red County, Red State 2:1 vs Control 0.1638 0.8867 0.9987 1.0000 1.0000
Amount Change Red County, Red State 3:1 vs Control 0.8336 0.5157 1.0000 1.0000 1.0000
Amount Change Blue County, Red State 1:1 vs Control 118.4810 0.4420 1.0000 1.0000 1.0000
Amount Change Blue County, Red State 2:1 vs Control 120.4633 0.4390 1.0000 1.0000 1.0000
Amount Change Blue County, Red State 3:1 vs Control 120.3892 0.4397 1.0000 1.0000 1.0000
Amount Change Red County, Blue State 1:1 vs Control -55.7933 0.4443 1.0000 1.0000 1.0000
Amount Change Red County, Blue State 2:1 vs Control 0.2775 0.8023 1.0000 1.0000 1.0000
Amount Change Red County, Blue State 3:1 vs Control 1.3375 0.1883 0.9810 1.0000 1.0000
Amount Change Blue County, Blue State 1:1 vs Control 0.8334 0.5060 1.0000 1.0000 1.0000
Amount Change Blue County, Blue State 2:1 vs Control -0.2961 0.8370 1.0000 1.0000 1.0000
Amount Change Blue County, Blue State 3:1 vs Control 0.2720 0.8263 1.0000 1.0000 1.0000
∗, ∗∗, and ∗∗∗ indicate that the corresponding p-values are less than 10%, 5%, and 1%, respectively
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values by a considerable margin. For instance, the multiplicity unadjusted p-values produced by applying

Remark 3.2 suggests that the null hypothesis for “response rate,” “red county in a red state,” and “2:1 vs

control” could be rejected at the 0.01 significance level with the p-value being 0.0040 when controls are not

included, and 0.0060 when controls are included. Yet, by taking multiple testing into account, Theorem 3.1

yields much larger p-values of 0.1187 and 0.1710, with and without controls, respectively, suggesting that we

cannot reject the hypothesis even at a 0.10 significance level.

Both in the case where controls are included, and in the case where they are not, when we do not take multiple

testing into account, 21 null hypotheses are rejected at p < 0.10 level. Once we adjust for multiplicity,

however, Theorem 3.1 indicates that, in both cases, only 7 null hypotheses are rejected. Notice that Theorem

3.1 always gives weakly smaller p-values than the Bonferroni and Holm procedures and, for many of the

hypotheses, generates strictly smaller p-values than these two procedures. Indeed, with and without controls,

only 6 null hypotheses are rejected, at the 0.10 level, using p-values resulting from either of these two

procedures. This difference is even more pronounced if we examine the null hypotheses rejected at the 0.01

level. At the 0.01 level, with and without controls, Theorem 3.1 rejects 4 null hypotheses while the Bonferroni

and Holm procedures are unable to reject any.

5. Epilogue

As policymakers continue to increase their demands for evidence and make decisions based on science, the

scientific community is relied on to provide sound advice. One core issue that continues to plague the fluid

transference of true insights from researchers to policymakers is a large false discovery rate. In this paper,

we extend the approach of List et al. (2019) to exploit observed, baseline covariates to obtain more powerful

inferences. The methodology builds upon general results in Romano and Wolf (2010) and, with respect to

the way in which covariates are included, Ye et al. (2022).

We showcase our methodology by examining how multiple testing affects the insights in Karlan and List

(2007). The results are interesting in their own right, as they provide elasticity estimates of import to

academics, practitioners, and policymakers. Importantly, we find that multiple testing corrections lead to

fewer rejections than when no such adjustments are made, but that using covariates correctly can lead to

more powerful inferences.
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Appendix A. Proof of Theorem 3.1

First note that, under Assumption 2.1, Q ∈ ωs if and only if P ∈ ω̃s, where

ω̃s = {P (Q) : Q ∈ Ω, EP [Yi,k|Di = d, Zi = z] = EP [Yi,k|Di = d′, Zi = z]}

=
{
P (Q) : Q ∈ Ω, µk|d,z(P (Q)) = µk|d′,z(P (Q))

}
=

{
P (Q) : Q ∈ Ω, θk|d,z(P (Q)) = θk|d′,z(P (Q))

}
,

since µX|d,z(P (Q)) = µX|z(P (Q)) for any Q satisfying Assumption 2.1.

The proof of this result now follows by verifying the conditions of Corollary 5.1 in Romano and Wolf (2010).

In particular, we verify Assumptions B.1–B.4 in Romano and Wolf (2010).

In order to verify B1, we begin by defining

T ∗
s,n(P ) =

√
n
((

θ̂k|d,z − θk|d,z(P )
)
−

(
θ̂k|d′,z − θk|d′,z(P )

))
,

and

T ∗
n(P ) = (T ∗

s,n(P ) : s ∈ S) ,

analogously to List et al. (2019). Next, note that

√
n(θ̂k|d,z − θk|d,z(P )) =

√
n(Ȳk|d,z − µk|d,z(P ))−

√
nb̂′k|d,z(X̄d,z − X̄z)

+
√
nbk|d,z(P )′(µX|d,z(P )− µX|z(P ))

=
√
n(Ȳk|d,z − µk|d,z(P ))−

√
nb̂′k|d,z

(
(X̄d,z − µX|d,z(P ))− (X̄z − µX|z(P ))

)
−
√
n(b̂k|d,z − bk|d,z(P ))′(µX|d,z(P )− µX|z(P ))

=
√
n(Ȳk|d,z − µk|d,z(P ))−

√
nbk|d,z(P )′

(
(X̄d,z − µX|d,z(P ))− (X̄z − µX|z(P ))

)
−
√
n(b̂k|d,z − bk|d,z(P ))′

(
(X̄d,z − µX|d,z(P ))− (X̄z − µX|z(P ))

)
−
√
n(b̂k|d,z − bk|d,z(P ))′(µX|d,z(P )− µX|z(P ))

= ∆1,k|d,z(P )−∆2,k|d,z(P ) ,

where

∆1,k|d,z(P ) =
√
n(Ȳk|d,z − µk|d,z(P ))−

√
nbk|d,z(P )′

(
(X̄d,z − µX|d,z(P ))− (X̄z − µX|z(P ))

)
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∆2,k|d,z(P ) =
√
n(b̂k|d,z − bk|d,z(P ))′

(
(X̄d,z − µX|d,z(P ))− (X̄z − µX|z(P ))

)
+
√
n(b̂k|d,z − bk|d,z(P ))′(µX|d,z(P )− µX|z(P )) .

For any P = P (Q) such that Q satisfies Assumption 2.1, note that

µX|d,z(P )− µX|z(P ) = 0 .

Furthermore, under Assumptions 2.1–2.3, the WLLN and CMT imply that

b̂k|d,z − bk|d,z(P )
P−→ 0 .

Finally, under Assumptions 2.2–2.3, the CLT implies that

√
n
((
X̄d,z − µX|d,z(P )

)
−

(
X̄z − µX|z(P )

))
= OP (1) .

Hence,

∆2,k|d,z(P )
P−→ 0 .

It follows that

T ∗
n(P ) = (∆1,k|d,z(P )−∆1,k|d′,z(P ) : s ∈ S) + oP (1) .

In order to deduce the limiting behavior of (∆1,k|d,z(P )−∆1,k|d′,z(P ) : s ∈ S), note that it may be written

as f(An(P ), Bn), where

An(P ) = C(P )
1√
n

∑
1≤i≤n

cn,i(P ) ,

where C(P ) is the 4|S| × 2(1 + 2dim(Xi))|S| matrix formed by stacking diagonally the terms



1 −bk|d,z(P )′ 0 0 0 0

0 0 bk|d,z(P )′ 0 0 0

0 0 0 1 −bk|d′,z(P )′ 0

0 0 0 0 0 bk|d′,z(P )′


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and ci(P ) is the 2(1 + 2dim(Xi))|S| dimensional vector formed by stacking vertically for s ∈ S the terms



(
Yi,k − µk|d,z (P )

)
I {Di = d, Zi = z}(

Xi − µX|d,z (P )
)
I {Di = d, Zi = z}(

Xi − µX|z (P )
)
I {Zi = z}(

Yi,k − µk|d′,z (P )
)
I {Di = d′, Zi = z}(

Xi − µX|d′,z (P )
)
I {Di = d′, Zi = z}(

Xi − µX|z (P )
)
I {Zi = z}


,

Bn is the 4|S|-dimensional vector formed by stacking vertically for s ∈ S the terms



n
nd,z

n
nz

− n
nd′,z

− n
nz


,

and f : R4|S| ×R4|S| → R|S| is the function of An(P ) and Bn whose sth term is the inner product of sth

set of terms defining An(P ) and Bn. Since EP [ci(P )] = 0, the CLT, CMT and WLLN allow us to deduce,

under Assumptions 2.2–2.4, the limiting behavior of both An(P ) and Bn. In particular, Bn(P )
P−→ B(P ),

where B(P ) is the 4|S|-dimensional vector formed by stacking vertically for s ∈ S the terms



1
P{Di=d,Zi=z}

1
P{Zi=z}

− 1
P{Di=d′,Zi=z}

− 1
P{Zi=z}


,

whereas An(P )
d−→ N(0, V (P )) for a suitable variance matrix V (P ). It follows from the CMT that

f(An(P ), Bn)
d−→ N(0,Σ(P )) ,

for a suitable choice of Σ(P ). Therefore,

T ∗
n(P )

d−→ N(0,Σ(P )) ,

completing the verification of B1.

24



To verify B2 and B3, it suffices to show that each of the diagonal terms of Σ(P ) is non-zero. Some calculation

shows that the sth diagonal element of Σ(P ) is given by

VarP [Yi,k − bk|d,z(P )′Xi|Di = d, Zi = z]

P{Di = d, Zi = z}

+
VarP [Yi,k − bk|d′,z(P )′Xi|Di = d′, Zi = z]

P{Di = d′, Zi = z}

+
VarP [

(
bk|d,z(P )− bk|d′,z(P )

)′
Xi|Zi = z]

P{Zi = z}
,

which is positive since the last term is non-negative and Assumption 2.4 ensures that the first two terms are

positive, completing the verification of B2 and B3.

To verify B4, we first argue that

T ∗
n(Pn)

d−→ N(0,Σ(P ))

under a suitable sequence of distributions Pn. To this end, assume Pn satisfies:

(a) Pn converges weakly to P

(b) bk|d,z(Pn) → bk|d,z(P ) for all k ∈ K, d ∈ D and z ∈ Z.

(c) Bn
Pn−−→ B(P )

(d) VarPn [ci(Pn)] → VarP [ci(P )].

(e) ∆2,k|d,z(Pn)
Pn−−→ 0 for all k ∈ K, d ∈ D and z ∈ Z.

Under (b), C(Pn) → C(P ). Using (a) and (d) together with Theorem 15.4.5 in Lehmann and Romano

(2006), we have that

An(Pn)
d−→ N(0, V (P ))

under Pn. It thus follows from (c) and the CMT that

(∆1,k|d,z(Pn)−∆1,k|d′,z(Pn) : s ∈ S) d−→ N(0,Σ(P )) .

Finally, (e) implies that

T ∗
n(Pn)

d−→ N(0,Σ(P ))

under any such sequence Pn. To complete the verification of B4, first note that it suffices to show that for

every subsequence nj there is a further subsequence njk such that P̂njk
satisfies (a) – (e) w.p.1. We provide

only a sketch of the argument. To this end, first note that P̂n satisfies (a) by the Glivenko-Cantelli theorem

w.p.1 and (b) and (d) w.p.1 by the SLLN and CMT. Arguing element-by-element and applying Lemma

25



15.4.1 in Lehmann and Romano (2006), it is possible to show that P̂n satisfies (c) w.p.1. To verify (e), we

first argue that it suffices to show for any ϵ > 0 that

f(ϵ, P̂n)
P→ 0 , (A.1)

where f(ϵ, P ) = P{|∆2,k|d,z(P )| > ϵ}. To see that the above requirement is sufficient, note that (A.1) implies

that there is 0 < ϵn → 0 sufficiently slowly such that

f(ϵn, P̂n)
P→ 0 .

The preceding display further implies that for every subsequence nj there is a further subsequence njk such

that

f(ϵnjk
, P̂njk

) → 0 w.p.1 ,

which implies that P̂njk
satisfies (e) w.p.1. We now return to verifying (A.1). By Markov’s inequality, it

suffices to show that the expected value under P of the left-hand side of (A.1) tends to zero. To this end,

note that by applying Lemma 15.4.1 in Lehmann and Romano (2006) it is possible to show that b̂k|d,z tends

in probability to bk|d,z(P ) under P̂n w.p.1. The SLLN further implies that bk|d,z(P̂n) → bk|d,z(P ) w.p.1. It

follows that

K1,n(P̂n) converges weakly to δ0 w.p.1 , (A.2)

where K1,n(P ) is the distribution of |b̂k|d,z − bk|d,z(P )| under P and δ0 is the distribution with mass one at

zero. Next, let K2,n(P ) be the distribution of |
√
n((X̄d,z − µX|d,z(P )) − (X̄z − µX|z(P )))| under P . Note

that

√
n((X̄d,z−µX|d,z(P ))−(X̄z−µX|z(P ))) =

 n
nd,z

− n
nz


′

1√
n

∑
1≤i≤n

 (
Xi − µX|d,z (P )

)
I {Di = d, Zi = z}(

Xi − µX|z (P )
)
I {Zi = z}

 .

Using this decomposition together with Lemma 15.4.1 and Theorem 15.4.5 in Lehmann and Romano (2006),

it is possible to argue thatK2,n(P̂n) converges weakly w.p.1 to the distribution of |Z|, where Z is a mean-zero,

normally distributed random variable. It follows from the CMT that

K3,n(P̂n) converges weakly to δ0 w.p.1 , (A.3)
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where K3,n(P ) is the distribution of |(b̂k|d,z − bk|d,z(P ))′
√
n((X̄d,z −µX|d,z(P ))− (X̄z −µX|z(P )))| under P .

To complete the argument, note that for any constant c > 0

f(ϵ, P ) = P{|∆2,k|d,z(P )| > ϵ}

≤ P
{
|(b̂k|d,z − bk|d,z(P ))′

√
n((X̄d,z − µX|d,z(P ))− (X̄z − µX|z(P )))| > ϵ

2

}
+ P

{
|(b̂k|d,z − bk|d,z(P ))′

√
n(µX|d,z(P )− µX|z(P ))| > ϵ

2

}
≤ P

{
|(b̂k|d,z − bk|d,z(P ))′

√
n((X̄d,z − µX|d,z(P ))− (X̄z − µX|z(P )))| > ϵ

2

}
+ P

{
|(b̂k|d,z − bk|d,z(P ))| > ϵ

2c

}
+ I

{
|
√
n(µX|d,z(P )− µX|z(P ))| > c

}
.

Hence,

f(ϵ, P̂n) ≤
(
1−K3,n

( ϵ

2
, P̂n

)
+K3,n

(
− ϵ

2
, P̂n

))
+

(
1−K1,n

( ϵ

2c
, P̂n

)
+K1,n

(
− ϵ

2c
, P̂n

))
+ I

{
|
√
n(µX|d,z(P̂n)− µX|z(P̂n))| > c

}
,

where it is understood that Kj,n(x, P ) is the c.d.f. associated with Kj,n(P ) for 1 ≤ j ≤ 3. For any fixed

c > 0, it follows from (A.2) – (A.3) that the first and second terms on the right-hand side of the preceding

display tend to zero w.p.1, while the expected value under P of the last term can be made arbitrarily small

by choosing c sufficiently large since, using arguments akin to those given above,

√
n(µX|d,z(P̂n)− µX|z(P̂n)) =

√
n((µX|d,z(P̂n)− µX|d,z(P ))− (µX|z(P̂n)− µX|z(P ))

d→ N(0,W (P ))

for a suitable choice of W (P ), where we have exploited the fact that µX|d,z(P ) = µX|z(P ). It now follows

from the dominated convergence theorem that the expected value under P of the left-hand side of (A.1)

tends to zero, as desired.
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